Установка
❯ docker pull ghcr.io/eat-pray-ai/yutu:latestОписание
 # `yutu` [](https://gitmoji.dev) [](https://goreportcard.com/report/github.com/eat-pray-ai/yutu) [](https://github.com/eat-pray-ai/yutu?tab=Apache-2.0-1-ov-file) [](https://pkg.go.dev/github.com/eat-pray-ai/yutu) [](https://raw.githack.com/wiki/eat-pray-ai/yutu/coverage.html) [](https://github.com/eat-pray-ai/yutu/stargazers) [](https://github.com/eat-pray-ai/yutu/releases/latest) [](https://github.com/eat-pray-ai/yutu/actions/workflows/publish.yml) [](https://github.com/eat-pray-ai/yutu/actions/workflows/codeql.yml) [](https://github.com/eat-pray-ai/yutu/actions/workflows/test.yml) [](https://archestra.ai/mcp-catalog/eat-pray-ai__yutu) [](https://github.com/eat-pray-ai/yutu/releases/latest) [](https://formulae.brew.sh/formula/yutu) [](https://winstall.app/apps/eat-pray-ai.yutu) [](https://www.producthunt.com/posts/yutu?embed=true&utm_source=badge-featured&utm_medium=badge&utm_souce=badge-yutu) `yutu` is a fully functional MCP server and CLI for YouTube to automate your YouTube workflows. It can manipulate almost all YouTube resources, like videos, playlists, channels, comments, captions, and more. [中文文档](./README_zh.md) [](https://asciinema.org/a/wXIHU4ciFBAKrHfaFNkMoIs12) ## Table of Contents - [Prerequisites](#prerequisites) - [Installation](#installation) - [GitHub Actions](#github-actions) - [Docker](#docker) - [Gopher](#gopher) - [Linux](#linux) - [macOS](#macos) - [Windows](#windows) - [Verifying Installation](#verifying-installation) - [MCP Server](#mcp-server) - [Usage](#usage) - [Features](#features) - [Contributing](#contributing) ## Prerequisites Before you begin, an account on [Google Cloud Platform](https://console.cloud.google.com/) is required to create a **Project** and enable these APIs for this project, in `APIs & Services -> Enable APIs and services -> + ENABLE APIS AND SERVICES` - [YouTube Data API v3(Required)](https://console.cloud.google.com/apis/api/youtubeanalytics.googleapis.com/overview) - [YouTube Analytics API(Optional)](https://console.cloud.google.com/apis/api/youtubeanalytics.googleapis.com/overview) - [YouTube Reporting API(Optional)](https://console.cloud.google.com/apis/api/youtubereporting.googleapis.com/overview) After enabling the APIs, create an `OAuth content screen` with yourself as test user, then create an `OAuth Client ID` of type `Web Application` with `http://localhost:8216` as the redirect URI. Download this credential to your local machine with name `client_secret.json`, it should look like ```json { "web": { "client_id": "11181119.apps.googleusercontent.com", "project_id": "yutu-11181119", "auth_uri": "https://accounts.google.com/o/oauth2/auth", "token_uri": "https://oauth2.googleapis.com/token", "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs", "client_secret": "XXXXXXXXXXXXXXXX", "redirect_uris": [ "http://localhost:8216" ] } } ``` To verify this credential, run the following command ```shell ❯ yutu auth --credential client_secret.json ``` A browser window will open asking for your permission to access your YouTube account, after granting the permission, a token w
Отзывы (0)
Пока нет отзывов. Будьте первым!
Статистика
Информация
Технологии
Похожие серверы
mcp-chain-of-draft-server
Chain of Draft Server is a powerful AI-driven tool that helps developers make better decisions through systematic, iterative refinement of thoughts and designs. It integrates seamlessly with popular AI agents and provides a structured approach to reasoning, API design, architecture decisions, code reviews, and implementation planning.
mcp-use-ts
mcp-use is the framework for MCP with the best DX - Build AI agents, create MCP servers with UI widgets, and debug with built-in inspector. Includes client SDK, server SDK, React hooks, and powerful dev tools.
mesh
Define and compose secure MCPs in TypeScript. Generate AI workflows and agents with React + Tailwind UI. Deploy anywhere.
rhinomcp
RhinoMCP connects Rhino 3D to AI Agent through the Model Context Protocol (MCP)