Установка
pip install mcpstoreОписание
<div align="center"> <img src="assets/logo.svg" alt="McpStore" width="400"/> ---     [English](README_en.md) | [简体中文](README_zh.md) [在线体验](https://web.mcpstore.wiki) | [详细文档](https://doc.mcpstore.wiki/) | [快速使用](###简单示例) </div> ### mcpstore 是什么? mcpstore 是面向开发者的开箱即用的 MCP 服务编排层:用一个 Store 统一管理服务,并将 MCP 适配给 AI 框架`LangChain等`使用。 ### 简单示例 首先只需要需要初始化一个store ```python from mcpstore import MCPStore store = MCPStore.setup_store() ``` 现在就有了一个 `store`,后续只需要围绕这个`store`去添加或者操作你的服务,`store` 会维护和管理这些 MCP 服务。 #### 给store添加第一个服务 ```python #在上面的代码下面加入 store.for_store().add_service({"mcpServers": {"mcpstore_wiki": {"url": "https://www.mcpstore.wiki/mcp"}}}) store.for_store().wait_service("mcpstore_wiki") ``` 通过add方法便捷添加服务,add_service方法支持多种mcp服务配置格式,主流的mcp配置格式都可以直接传入。wait方法可选,是否同步等待服务就绪。 #### 将mcp适配转为langchain需要的对象 ```python tools = store.for_store().for_langchain().list_tools() print("loaded langchain tools:", len(tools)) ``` 简单链上即可直观的将mcp适配为langchain直接使用的tools列表 ##### 框架适配 会逐渐支持更多的框架 | 已支持框架 | 获取工具 | | --- | --- | | LangChain | `tools = store.for_store().for_langchain().list_tools()` | | LangGraph | `tools = store.for_store().for_langgraph().list_tools()` | | AutoGen | `tools = store.for_store().for_autogen().list_tools()` | | CrewAI | `tools = store.for_store().for_crewai().list_tools()` | | LlamaIndex | `tools = store.for_store().for_llamaindex().list_tools()` | #### 现在就可以正常的使用langchain了 ```python #添加上面的代码 from langchain.agents import create_agent from langchain_openai import ChatOpenAI llm = ChatOpenAI( temperature=0, model="deepseek-chat", api_key="sk-*****", base_url="https://api.deepseek.com" ) agent = create_agent(model=llm, tools=tools, system_prompt="你是一个助手,回答的时候带上表情") events = agent.invoke({"messages": [{"role": "user", "content": "mcpstore怎么添加服务?"}]}) print(events) ``` ### 快速开始 ```bash pip install mcpstore ``` #### Agent 分组 使用 `for_agent(agent_id)` 实现对mcp服务进行分组 ```python agent_id1 = "agent1" store.for_agent(agent_id1).add_service({"name": "mcpstore_wiki", "url": "https://www.mcpstore.wiki/mcp"}) agent_id2 = "agent2" store.for_agent(agent_id2).add_service({"name": "playwright", "command": "npx", "args": ["@playwright/mcp"]}) agent1_tools = store.for_agent(agent_id1).list_tools() agent2_tools = store.for_agent(agent_id2).list_tools() ``` `store.for_agent(agent_id)` 与 `store.for_store()` 共享大部分函数接口,本质上是通过分组机制在全局范围内创建了一个逻辑子集。 通过为不同 Agent 分配专属服务实现服务的有效隔离,避免上下文过长。 与聚合服务`hub_service`(实验性)和快速生成 A2A Agent Card (计划支持)配合较好。 #### 常用操作 | 动作 | 命令示例 | |-------------|----------------------------------------------------------------------------------------| | 定位服务 | `store.for_store().find_service("service_name")` | | 更新服务 | `store.for_store().update_service("service_name", new_config)` | | 增量更新 | `store.for_store().patch_service("service_name", {"headers": {"X-API-Key": "..."}})` | | 删除服务 | `store.for_store().delete_service("service_name")` | | 重启服务 | `store.for_store().restart_service("service_name")` | | 断开服务 | `store.for_store().disconnect_service("service_name")` | | 健康检查 | `store.for_store().check_services()` | | 查看配置 | `store.for_store().show_config()` | | 服务详情 | `store.for_store().get_service_info("service_name")` | | 等待就绪 | `store.for_store().wait_service("service_name", timeout=30)` | | 聚合服务 | `store.for_agent(agent_id).hub_services()` | | 列出Agent | `store.for_store().list_agents()` | | 列出服务 | `store.for_store().list_services()` | | 列出工具 | `store.for_store().list_tools()` | | 定位工具 | `store.for_store().find_tool("tool_name")` | | 执行工具 | `store.for_store().call_tool("tool_name", {"k": "v"})` | #### 缓存/Redis 后端 支持使用 Redis 作为共享缓存后端,用于跨进程/多实例共享服务与工具元数据。安装额外依赖: ```bash pip install mcpstore[redis] #或直接 单独 pip install redis ``` 使用方式:在store初始化的时候通过 `external_db` 参数传入: ```python from mcpstore import MCPStore store = MCPStore.setup_store( external_db={ "cache": { "type": "redis", "url": "redis://localhost:6379/0", "password": None, "namespace": "demo_namespace" } } ) ``` 更多的`setup_store`配置见文档 ### API 模式 #### 启动api 通过SDK快速启动 ```python from mcpstore import MCPStore
Отзывы (0)
Пока нет отзывов. Будьте первым!
Статистика
Информация
Технологии
Похожие серверы
mcp-chain-of-draft-server
Chain of Draft Server is a powerful AI-driven tool that helps developers make better decisions through systematic, iterative refinement of thoughts and designs. It integrates seamlessly with popular AI agents and provides a structured approach to reasoning, API design, architecture decisions, code reviews, and implementation planning.
mcp-use-ts
mcp-use is the framework for MCP with the best DX - Build AI agents, create MCP servers with UI widgets, and debug with built-in inspector. Includes client SDK, server SDK, React hooks, and powerful dev tools.
mesh
Define and compose secure MCPs in TypeScript. Generate AI workflows and agents with React + Tailwind UI. Deploy anywhere.
rhinomcp
RhinoMCP connects Rhino 3D to AI Agent through the Model Context Protocol (MCP)