mcp-server-qdrant
Сообществоот qdrant
An official Qdrant Model Context Protocol (MCP) server implementation
Установка
# Build the containerОписание
# mcp-server-qdrant: A Qdrant MCP server [](https://smithery.ai/protocol/mcp-server-qdrant) > The [Model Context Protocol (MCP)](https://modelcontextprotocol.io/introduction) is an open protocol that enables > seamless integration between LLM applications and external data sources and tools. Whether you're building an > AI-powered IDE, enhancing a chat interface, or creating custom AI workflows, MCP provides a standardized way to > connect LLMs with the context they need. This repository is an example of how to create a MCP server for [Qdrant](https://qdrant.tech/), a vector search engine. ## Overview An official Model Context Protocol server for keeping and retrieving memories in the Qdrant vector search engine. It acts as a semantic memory layer on top of the Qdrant database. ## Components ### Tools 1. `qdrant-store` - Store some information in the Qdrant database - Input: - `information` (string): Information to store - `metadata` (JSON): Optional metadata to store - `collection_name` (string): Name of the collection to store the information in. This field is required if there are no default collection name. If there is a default collection name, this field is not enabled. - Returns: Confirmation message 2. `qdrant-find` - Retrieve relevant information from the Qdrant database - Input: - `query` (string): Query to use for searching - `collection_name` (string): Name of the collection to store the information in. This field is required if there are no default collection name. If there is a default collection name, this field is not enabled. - Returns: Information stored in the Qdrant database as separate messages ## Environment Variables The configuration of the server is done using environment variables: | Name | Description | Default Value | |--------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------| | `QDRANT_URL` | URL of the Qdrant server | None | | `QDRANT_API_KEY` | API key for the Qdrant server | None | | `COLLECTION_NAME` | Name of the default collection to use. | None | | `QDRANT_LOCAL_PATH` | Path to the local Qdrant database (alternative to `QDRANT_URL`) | None | | `EMBEDDING_PROVIDER` | Embedding provider to use (currently only "fastembed" is supported) | `fastembed` | | `EMBEDDING_MODEL` | Name of the embedding model to use | `sentence-transformers/all-MiniLM-L6-v2` | | `TOOL_STORE_DESCRIPTION` | Custom description for the store tool | See default in [`settings.py`](src/mcp_server_qdrant/settings.py) | | `TOOL_FIND_DESCRIPTION` | Custom description for the find tool | See default in [`settings.py`](src/mcp_server_qdrant/settings.py) | Note: You cannot provide both `QDRANT_URL` and `QDRANT_LOCAL_PATH` at the same time. > [!IMPORTANT] > Command-line arguments are not supported anymore! Please use environment variables for all configuration. ### FastMCP Environment Variables Since `mcp-server-qdrant` is based on FastMCP, it also supports all the FastMCP environment variables. The most important ones are listed below: | Environment Variable | Description | Default Value | |---------------------------------------|-----------------------------------------------------------|---------------| | `FASTMCP_DEBUG` | Enable debug mode | `false` | | `FASTMCP_LOG_LEVEL` | Set logging level (DEBUG, INFO, WARNING, ERROR, CRITICAL) | `INFO` | | `FASTMCP_HOST` | Host address to bind the server to | `127.0.0.1` | | `FASTMCP_PORT` | Port to run the server on | `8000` | | `FASTMCP_WARN_ON_DUPLICATE_RESOURCES` | Show warnings for duplicate resources | `true` | | `FASTMCP_WARN_ON_DUPLICATE_TOOLS` | Show warnings for duplicate tools | `true` | | `FASTMCP_WARN_ON_DUPLICATE_PROMPTS` | Show warnings for duplicate p
Отзывы (0)
Пока нет отзывов. Будьте первым!
Статистика
Информация
Технологии
Похожие серверы
mcp-chain-of-draft-server
Chain of Draft Server is a powerful AI-driven tool that helps developers make better decisions through systematic, iterative refinement of thoughts and designs. It integrates seamlessly with popular AI agents and provides a structured approach to reasoning, API design, architecture decisions, code reviews, and implementation planning.
mcp-use-ts
mcp-use is the framework for MCP with the best DX - Build AI agents, create MCP servers with UI widgets, and debug with built-in inspector. Includes client SDK, server SDK, React hooks, and powerful dev tools.
mesh
Define and compose secure MCPs in TypeScript. Generate AI workflows and agents with React + Tailwind UI. Deploy anywhere.
rhinomcp
RhinoMCP connects Rhino 3D to AI Agent through the Model Context Protocol (MCP)