haiku.rag
Сообществоот ggozad
Opinionated agentic RAG powered by LanceDB, Pydantic AI, and Docling
Установка
uv pip install haiku.ragОписание
# Haiku RAG Agentic RAG built on [LanceDB](https://lancedb.com/), [Pydantic AI](https://ai.pydantic.dev/), and [Docling](https://docling-project.github.io/docling/). ## Features - **Hybrid search** — Vector + full-text with Reciprocal Rank Fusion - **Reranking** — MxBAI, Cohere, Zero Entropy, or vLLM - **Question answering** — QA agents with citations (page numbers, section headings) - **Research agents** — Multi-agent workflows via pydantic-graph: plan, search, evaluate, synthesize - **Document structure** — Stores full [DoclingDocument](https://docling-project.github.io/docling/concepts/docling_document/), enabling structure-aware context expansion and visual grounding - **Multiple providers** — Embeddings: Ollama, OpenAI, VoyageAI, LM Studio, vLLM. QA/Research: any model supported by Pydantic AI - **Local-first** — Embedded LanceDB, no servers required. Also supports S3, GCS, Azure, and LanceDB Cloud - **MCP server** — Expose as tools for AI assistants (Claude Desktop, etc.) - **File monitoring** — Watch directories and auto-index on changes - **Inspector** — TUI for browsing documents, chunks, and search results - **CLI & Python API** — Full functionality from command line or code ## Installation **Python 3.12 or newer required** ### Full Package (Recommended) ```bash uv pip install haiku.rag ``` Includes all features: document processing, all embedding providers, and rerankers. ### Slim Package (Minimal Dependencies) ```bash uv pip install haiku.rag-slim ``` Install only the extras you need. See the [Installation](https://ggozad.github.io/haiku.rag/installation/) documentation for available options ## Quick Start ```bash # Index a PDF haiku-rag add-src paper.pdf # Search haiku-rag search "attention mechanism" # Ask questions with citations haiku-rag ask "What datasets were used for evaluation?" --cite # Deep QA — decomposes complex questions into sub-queries haiku-rag ask "How does the proposed method compare to the baseline on MMLU?" --deep # Research mode — iterative planning and search haiku-rag research "What are the limitations of the approach?" --verbose # Watch a directory for changes haiku-rag serve --monitor ``` See [Configuration](https://ggozad.github.io/haiku.rag/configuration/) for customization options. ## Python API ```python from haiku.rag.client import HaikuRAG async with HaikuRAG("research.lancedb", create=True) as rag: # Index documents await rag.create_document_from_source("paper.pdf") await rag.create_document_from_source("https://arxiv.org/pdf/1706.03762") # Search — returns chunks with provenance results = await rag.search("self-attention") for result in results: print(f"{result.score:.2f} | p.{result.page_numbers} | {result.content[:100]}") # QA with citations answer, citations = await rag.ask("What is the complexity of self-attention?") print(answer) for cite in citations: print(f" [{cite.chunk_id}] p.{cite.page_numbers}: {cite.content[:80]}") ``` For research agents and streaming with [AG-UI](https://docs.ag-ui.com/), see the [Agents docs](https://ggozad.github.io/haiku.rag/agents/). ## MCP Server Use with AI assistants like Claude Desktop: ```bash haiku-rag serve --mcp --stdio ``` Add to your Claude Desktop configuration: ```json { "mcpServers": { "haiku-rag": { "command": "haiku-rag", "args": ["serve", "--mcp", "--stdio"] } } } ``` Provides tools for document management, search, QA, and research directly in your AI assistant. ## Examples See the [examples directory](examples/) for working examples: - **[Interactive Research Assistant](examples/ag-ui-research/)** - Full-stack research assistant with Pydantic AI and AG-UI featuring human-in-the-loop approval and real-time state synchronization - **[Docker Setup](examples/docker/)** - Complete Docker deployment with file monitoring and MCP server - **[A2A Server](examples/a2a-server/)** - Self-contained A2A protocol server package with conversational agent interface ## Documentation Full documentation at: https://ggozad.github.io/haiku.rag/ - [Installation](https://ggozad.github.io/haiku.rag/installation/) - Provider setup - [Configuration](https://ggozad.github.io/haiku.rag/configuration/) - YAML configuration - [CLI](https://ggozad.github.io/haiku.rag/cli/) - Command reference - [Python API](https://ggozad.github.io/haiku.rag/python/) - Complete API docs - [Agents](https://ggozad.github.io/haiku.rag/agents/) - QA agent and multi-agent research - [Server](https://ggozad.github.io/haiku.rag/server/) - File monitoring, MCP, and AG-UI - [MCP](https://ggozad.github.io/haiku.rag/mcp/) - Model Context Protocol integration - [Inspector](https://ggozad.github.io/haiku.rag/inspector/) - Database browser TUI - [Benchmarks](https://ggozad.github.io/haiku.rag/benchmarks/) - Performance benchmarks - [Changelog](https://ggozad.github.io/haiku.rag/changelog/) - Version history mcp-name: io.github.ggozad/haiku-rag
Отзывы (0)
Пока нет отзывов. Будьте первым!
Статистика
Информация
Технологии
Похожие серверы
mcp-chain-of-draft-server
Chain of Draft Server is a powerful AI-driven tool that helps developers make better decisions through systematic, iterative refinement of thoughts and designs. It integrates seamlessly with popular AI agents and provides a structured approach to reasoning, API design, architecture decisions, code reviews, and implementation planning.
mcp-use-ts
mcp-use is the framework for MCP with the best DX - Build AI agents, create MCP servers with UI widgets, and debug with built-in inspector. Includes client SDK, server SDK, React hooks, and powerful dev tools.
mesh
Define and compose secure MCPs in TypeScript. Generate AI workflows and agents with React + Tailwind UI. Deploy anywhere.
rhinomcp
RhinoMCP connects Rhino 3D to AI Agent through the Model Context Protocol (MCP)